Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.277
Filtrar
1.
J Ovarian Res ; 17(1): 87, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664755

RESUMO

Oxidative damage induced granulosa cells (GCs) apoptosis was considered as a significant cause of compromised follicle quality, antioxidants therapy has emerged as a potential method for improving endometriosis pregnancy outcomes. Here, we found that GCs from endometriosis patients show increased oxidative stress level. Methyl 3,4-dihydroxybenzoate (MDHB), a small molecule compound that is extracted from natural plants, reversed tert-butyl hydroperoxide (TBHP) induced GCs oxidative damage. Therefore, the aim of this study was to assess the protective effect of MDHB for GCs and its potential mechanisms. TUNEL staining and immunoblotting of cleaved caspase-3/7/9 showed MDHB attenuated TBHP induced GCs apoptosis. Mechanistically, MDHB treatment decreased cellular and mitochondria ROS production, improved the mitochondrial function by rescuing the mitochondrial membrane potential (MMP) and ATP production. Meanwhile, MDHB protein upregulated the expression of vital antioxidant transcriptional factor Nrf2 and antioxidant enzymes SOD1, NQO1 and GCLC to inhibited oxidative stress state, further beneficial to oocytes and embryos quality. Therefore, MDHB may represent a potential drug candidate in protecting granulosa cells in endometriosis, which can improve pregnancy outcomes for endometriosis-associated infertility.


Assuntos
Antioxidantes , Endometriose , Células da Granulosa , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Feminino , Estresse Oxidativo/efeitos dos fármacos , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Endometriose/metabolismo , Endometriose/tratamento farmacológico , Endometriose/patologia , Hidroxibenzoatos/farmacologia , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
2.
Cell Commun Signal ; 22(1): 235, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643161

RESUMO

BACKGROUND: Antral follicles consist of an oocyte cumulus complex surrounding by somatic cells, including mural granulosa cells as the inner layer and theca cells as the outsider layer. The communications between oocytes and granulosa cells have been extensively explored in in vitro studies, however, the role of oocyte-derived factor GDF9 on in vivo antral follicle development remains elusive due to lack of an appropriate animal model. Clinically, the phenotype of GDF9 variants needs to be determined. METHODS: Whole-exome sequencing (WES) was performed on two unrelated infertile women characterized by an early rise of estradiol level and defect in follicle enlargement. Besides, WES data on 1,039 women undergoing ART treatment were collected. A Gdf9Q308X/S415T mouse model was generated based on the variant found in one of the patients. RESULTS: Two probands with bi-allelic GDF9 variants (GDF9His209GlnfsTer6/S428T, GDF9Q321X/S428T) and eight GDF9S428T heterozygotes with normal ovarian response were identified. In vitro experiments confirmed that these variants caused reduction of GDF9 secretion, and/or alleviation in BMP15 binding. Gdf9Q308X/S415T mouse model was constructed, which recapitulated the phenotypes in probands with abnormal estrogen secretion and defected follicle enlargement. Further experiments in mouse model showed an earlier expression of STAR in small antral follicles and decreased proliferative capacity in large antral follicles. In addition, RNA sequencing of granulosa cells revealed the transcriptomic profiles related to defective follicle enlargement in the Gdf9Q308X/S415T group. One of the downregulated genes, P4HA2 (a collagen related gene), was found to be stimulated by GDF9 protein, which partly explained the phenotype of defective follicle enlargement. CONCLUSIONS: GDF9 bi-allelic variants contributed to the defect in antral follicle development. Oocyte itself participated in the regulation of follicle development through GDF9 paracrine effect, highlighting the essential role of oocyte-derived factors on ovarian response.


Assuntos
Infertilidade Feminina , Camundongos , Animais , Feminino , Humanos , Infertilidade Feminina/metabolismo , Folículo Ovariano/metabolismo , Oócitos/química , Oócitos/metabolismo , Células da Granulosa/metabolismo , Estrogênios/metabolismo , Fator 9 de Diferenciação de Crescimento/genética , Fator 9 de Diferenciação de Crescimento/análise , Fator 9 de Diferenciação de Crescimento/metabolismo
3.
Nat Aging ; 4(4): 527-545, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594460

RESUMO

Limited understanding exists regarding how aging impacts the cellular and molecular aspects of the human ovary. This study combines single-cell RNA sequencing and spatial transcriptomics to systematically characterize human ovarian aging. Spatiotemporal molecular signatures of the eight types of ovarian cells during aging are observed. An analysis of age-associated changes in gene expression reveals that DNA damage response may be a key biological pathway in oocyte aging. Three granulosa cells subtypes and five theca and stromal cells subtypes, as well as their spatiotemporal transcriptomics changes during aging, are identified. FOXP1 emerges as a regulator of ovarian aging, declining with age and inhibiting CDKN1A transcription. Silencing FOXP1 results in premature ovarian insufficiency in mice. These findings offer a comprehensive understanding of spatiotemporal variability in human ovarian aging, aiding the prioritization of potential diagnostic biomarkers and therapeutic strategies.


Assuntos
Oócitos , Ovário , Feminino , Humanos , Animais , Camundongos , Ovário/metabolismo , Oócitos/metabolismo , Fatores de Transcrição/metabolismo , Células da Granulosa/metabolismo , Perfilação da Expressão Gênica , Proteínas Repressoras/metabolismo , Fatores de Transcrição Forkhead/genética
4.
Food Chem Toxicol ; 187: 114634, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582344

RESUMO

The purpose of this study is to determine the effects of grayanotoxin in mad honey on ovarian tissue folliculogenesis in terms of cell death and nitric oxide expression. Three groups of 18 female Sprague-Dawley rats were formed. The first group received mad honey (80 mg/kg), the second group received normal honey (80 mg/kg), and the third group was the control. The first and second groups received normal and mad honey by oral gavage for 30 days before being sacrificed under anesthesia. Caspase 3 immunostaining showed a moderate to strong response, particularly in the mad honey group. In the mad honey group, immunostaining for caspase 8 and caspase 9 revealed a moderate immunoreaction in the granulosa cells of the Graaf follicles. The majority of Graaf follicles exhibited TUNEL positive in the mad honey group. The iNOS immunoreaction revealed a high level of expression in the mad honey group. In all three groups, eNOS immunostaining showed weak reactivity. According to the findings of apoptotic and nitric oxide marker expression, it was determined that mad honey may result in an increase in follicular atresia in ovarian follicles when compared to normal honey and control groups.


Assuntos
Diterpenos , Mel , Ovário , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Óxido Nítrico , Atresia Folicular , Estresse Oxidativo , Apoptose , Células da Granulosa
5.
J Ovarian Res ; 17(1): 72, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566229

RESUMO

BACKGROUND: Polycystic ovarian syndrome (PCOS) is the most common endocrine disease in women of childbearing age which is often associated with abnormal proliferation or apoptosis of granulosa cells (GCs). Studies proved that long non-coding RNA SNHG12 (lncRNA SNHG12) is significantly increased in ovarian cancer and cervical cancer patients and cells. The inhibition of lncRNA SNHG12 restrains the proliferation, migration, and invasion in tumor cells. OBJECTIVE: This study explores the role of lncRNA SNHG12 in the apoptosis of GCs in PCOS and the underlying regulated mechanism. METHODS: In this study, the injection of dehydroepiandrosterone (DHEA) successfully induced the PCOS model in SD rats. The human granulosa-like tumor cell line KGN was incubated with insulin to assess the effects of lncRNA SNHG12 on GC proliferation and apoptosis. RESULTS: Overexpression of lncRNA SNHG12 influenced the body weight, ovary weight, gonadal hormone, and pathological changes, restrained the expressions of microRNA (miR)-129 and miR-125b, while downregulation of lncRNA SNHG12 exerted the opposite effects in PCOS rats. After silencing lncRNA SNHG12 in cells, the cell viability and proliferation were lessened whereas apoptosis of cells was increased. A loss-of-functions test was implemented by co-transfecting miR-129 and miR-125b inhibitors into lncRNA SNHG12-knocking down cells to analyze the effects on cell viability and apoptosis. Next, the existence of binding sites of SNHG12 and miR-129/miR-125b was proved based on the pull-down assay. CONCLUSION: lncRNA SNHG12 might be a potential regulatory factor for the development of PCOS by sponging miR-129 and miR-125b in GCs.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , RNA Longo não Codificante , Humanos , Feminino , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Síndrome do Ovário Policístico/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos Sprague-Dawley , Células da Granulosa/metabolismo , Proliferação de Células , Apoptose/genética
6.
Reprod Biol Endocrinol ; 22(1): 38, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575956

RESUMO

The present study aimed to examine the effects of progranulin and omentin on basic ovarian cell functions. For this purpose, we investigated the effects of the addition of progranulin and omentin (0, 0.1, 1, or 10 ng/ml) on the viability, proliferation, apoptosis and steroidogenesis of cultured rabbit ovarian granulosa cells. To determine the importance of the interrelationships between granulosa cells and theca cells, we compared the influence of progranulin and omentin on progesterone and estradiol release in cultured granulosa cells and ovarian fragments containing both granulosa cells and theca cells. Cell viability, proliferation, cytoplasmic apoptosis and release of progesterone and estradiol were measured by Cell Counting Kit-8 (CCK-8), BrdU incorporation, cell death detection, and ELISA. Both progranulin and omentin increased granulosa cell viability and proliferation and decreased apoptosis. Progranulin increased progesterone release by granulosa cells but reduced progesterone output by ovarian fragments. Progranulin decreased estradiol release by granulosa cells but increased it in ovarian fragments. Omentin reduced progesterone release in both models. Omentin reduced estradiol release by granulosa cells but promoted this release in ovarian fragments. The present observations are the first to demonstrate that progranulin and omentin can be direct regulators of basic ovarian cell functions. Furthermore, the differences in the effects of these adipokines on steroidogenesis via granulosa and ovarian fragments indicate that these peptides could target both granulosa and theca cells.


Assuntos
Adipocinas , Progesterona , Feminino , Animais , Coelhos , Progesterona/metabolismo , Progranulinas/metabolismo , Progranulinas/farmacologia , Adipocinas/metabolismo , Adipocinas/farmacologia , Ovário/metabolismo , Células da Granulosa/metabolismo , Estradiol/metabolismo , Apoptose , Células Cultivadas , Proliferação de Células
7.
Reprod Biol Endocrinol ; 22(1): 41, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605340

RESUMO

BACKGROUND: Premature ovarian failure (POF) caused by cisplatin is a severe and intractable sequela for young women with cancer who received chemotherapy. Cisplatin causes the dysfunction of granulosa cells and mainly leads to but is not limited to its apoptosis and autophagy. Ferroptosis has been also reported to participate, while little is known about it. Our previous experiment has demonstrated that endometrial stem cells (EnSCs) can repair cisplatin-injured granulosa cells. However, it is still unclear whether EnSCs can play a repair role by acting on ferroptosis. METHODS: Western blotting and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were applied to detect the expression levels of ferroptosis-related genes. CCK-8 and 5-Ethynyl-2'-deoxyuridine (EdU) assays were used to evaluate cell viability. Transmission electron microscopy (TEM) was performed to detect ferroptosis in morphology. And the extent of ferroptosis was assessed by ROS, GPx, GSSG and MDA indicators. In vivo, ovarian morphology was presented by HE staining and the protein expression in ovarian tissue was detected by immunohistochemistry. RESULTS: Our results showed that ferroptosis could occur in cisplatin-injured granulosa cells. Ferroptosis inhibitor ferrostatin-1 (Fer-1) and EnSCs partly restored cell viability and mitigated the damage of cisplatin to granulosa cells by inhibiting ferroptosis. Moreover, the repair potential of EnSCs can be markedly blocked by ML385. CONCLUSION: Our study demonstrated that cisplatin could induce ferroptosis in granulosa cells, while EnSCs could inhibit ferroptosis and thus exert repair effects on the cisplatin-induced injury model both in vivo and in vitro. Meanwhile, Nrf2 was validated to participate in this regulatory process and played an essential role.


Assuntos
Cisplatino , Ferroptose , Feminino , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Células da Granulosa/metabolismo , Células-Tronco/metabolismo
8.
Sci Rep ; 14(1): 8770, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627575

RESUMO

Oxygen availability can have profound effects on cell fate decisions and survival, in part by regulating expression of hypoxia-inducible factors (HIFs). In the ovary, HIF expression has been characterised in granulosa cells, however, any requirement in oocytes remains relatively undefined. Here we developed a Hif2a/Epas1 germline-specific knockout mouse line in which females were fertile, however produced 40% fewer pups than controls. No defects in follicle development were detected, and quality of MII oocytes was normal, as per assessments of viability, intracellular reactive oxygen species, and spindle parameters. However, a significant diminishment of the primordial follicle pool was evident in cKO females that was attributed to accelerated follicle loss from postnatal day 6 onwards, potentially via disruption of the autophagy pathway. These data demonstrate the importance of HIF signalling in oocytes, particularly at the primordial follicle stage, and lend to the importance of controlling oxygen tension in the development of in vitro growth and maturation approaches for assisted reproduction.


Assuntos
Folículo Ovariano , Ovário , Animais , Feminino , Camundongos , Células da Granulosa/metabolismo , Oócitos/metabolismo , Folículo Ovariano/fisiologia , Oxigênio/metabolismo
9.
Theranostics ; 14(6): 2345-2366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646645

RESUMO

Rationale: Primordial follicles are limited in number and cannot be regenerated, dormant primordial follicles cannot be reversed once they enter a growth state. Therefore, the length of the female reproductive lifespan depends on the orderly progression and selective activation of primordial follicles, the mechanism of which remains unclear. Methods: We used human ovarian cortical biopsy specimens, granulosa cells from diminished ovarian reserve (DOR) patients, Hdac6-overexpressing transgenic mouse model, and RNA sequencing to analyze the crucial roles of histone deacetylase 6 (HDAC6) in fertility preservation and primordial follicle activation. Results: In the present study, we found that HDAC6 was highly expressed in most dormant primordial follicles. The HDAC6 expression was reduced accompanying reproductive senescence in human and mouse ovaries. Overexpression of Hdac6 delayed the rate of primordial follicle activation, thereby prolonging the mouse reproductive lifespan. Short-term inhibition of HDAC6 promoted primordial follicle activation and follicular development in humans and mice. Mechanism studies revealed that HDAC6 directly interacted with NGF, reducing acetylation modification of NGF and thereby accelerating its ubiquitination degradation. Consequently, the reduced NGF protein level maintained the dormancy of primordial follicles. Conclusions: The physiological significance of the high expression of HDAC6 in most primordial follicles is to reduce NGF expression and prevent primordial follicle activation to maintain female fertility. Reduced HDAC6 expression increases NGF expression in primordial follicles, activating their development and contributing to reproduction. Our study provides a clinical reference value for fertility preservation.


Assuntos
Desacetilase 6 de Histona , Camundongos Transgênicos , Fator de Crescimento Neural , Folículo Ovariano , Ubiquitinação , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Animais , Feminino , Folículo Ovariano/metabolismo , Humanos , Camundongos , Acetilação , Fator de Crescimento Neural/metabolismo , Células da Granulosa/metabolismo
10.
Sci Rep ; 14(1): 8070, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580672

RESUMO

Obesity is associated with increased ovarian inflammation and the establishment of leptin resistance. We presently investigated the role of impaired leptin signalling on transcriptional regulation in granulosa cells (GCs) collected from genetically obese mice. Furthermore, we characterised the association between ovarian leptin signalling, the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and macrophage infiltration in obese mice. After phenotype characterisation, ovaries were collected from distinct group of animals for protein and mRNA expression analysis: (i) mice subjected to a diet-induced obesity (DIO) protocol, where one group was fed a high-fat diet (HFD) and another a standard chow diet (CD) for durations of 4 or 16 weeks; (ii) mice genetically deficient in the long isoform of the leptin receptor (ObRb; db/db); (iii) mice genetically deficient in leptin (ob/ob); and (iv) mice rendered pharmacologically hyperleptinemic (LEPT). Next, GCs from antral follicles isolated from db/db and ob/ob mice were subjected to transcriptome analysis. Transcriptional analysis revealed opposing profiles in genes associated with steroidogenesis and prostaglandin action between the genetic models, despite the similarities in body weight. Furthermore, we observed no changes in the mRNA and protein levels of NLRP3 inflammasome components in the ovaries of db/db mice or in markers of M1 and M2 macrophage infiltration. This contrasted with the downregulation of NLRP3 inflammasome components and M1 markers in ob/ob and 16-wk HFD-fed mice. We concluded that leptin signalling regulates NLRP3 inflammasome activation and the expression of M1 markers in the ovaries of obese mice in an ObRb-dependent and ObRb-independent manner. Furthermore, we found no changes in the expression of leptin signalling and NLRP3 inflammasome genes in GCs from db/db and ob/ob mice, which was associated with no effects on macrophage infiltration genes, despite the dysregulation of genes associated with steroidogenesis in homozygous obese db/db. Our results suggest that: (i) the crosstalk between leptin signalling, NLRP3 inflammasome and macrophage infiltration takes place in ovarian components other than the GC compartment; and (ii) transcriptional changes in GCs from homozygous obese ob/ob mice suggest structural rearrangement and organisation, whereas in db/db mice the impairment in steroidogenesis and secretory activity.


Assuntos
Inflamassomos , Leptina , Animais , Feminino , Camundongos , Células da Granulosa/metabolismo , Inflamassomos/genética , Leptina/metabolismo , Camundongos Obesos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas NLR , Obesidade/metabolismo , Receptores para Leptina/genética , RNA Mensageiro
11.
Sci Adv ; 10(14): eadm7506, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578993

RESUMO

The reproductive and endocrine functions of the ovary involve spatially defined interactions among specialized cell populations. Despite the ovary's importance in fertility and endocrine health, functional attributes of ovarian cells are largely uncharacterized. Here, we profiled >18,000 genes in 257 regions from the ovaries of two premenopausal donors to examine the functional units in the ovary. We also generated single-cell RNA sequencing data for 21,198 cells from three additional donors and identified four major cell types and four immune cell subtypes. Custom selection of sampling areas revealed distinct gene activities for oocytes, theca, and granulosa cells. These data contributed panels of oocyte-, theca-, and granulosa-specific genes, thus expanding the knowledge of molecular programs driving follicle development. Serial samples around oocytes and across the cortex and medulla uncovered previously unappreciated variation of hormone and extracellular matrix remodeling activities. This combined spatial and single-cell atlas serves as a resource for future studies of rare cells and pathological states in the ovary.


Assuntos
Folículo Ovariano , Ovário , Feminino , Humanos , Ovário/metabolismo , Folículo Ovariano/metabolismo , Oócitos/metabolismo , Células da Granulosa/metabolismo , Perfilação da Expressão Gênica
12.
Mol Reprod Dev ; 91(4): e23741, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38616716

RESUMO

Inflammatory damage in ovarian granulosa cells (GCs) is a key mechanism in polycystic ovary syndrome (PCOS), cytoplasmic polyadenylation element binding protein-1 (CPEB1) is important in inflammatory regulation, however, its role in PCOS is unclear. We aim to research the mechanism of CPEB1 in ovarian GCs in PCOS using dehydroepiandrosterone (DHEA)-induced PCOS rat models and testosterone-incubated GC models. The pathophysiology in PCOS rats was analyzed. Quantitative-realtime-PCR, TUNEL, immunohistochemistry, and Western blot were applied for quantification. Additionally, cell counting kit-8, flow cytometry, immunofluorescence, Western blot, and Monodansylcadaverine staining were performed. We found that PCOS rat models exhibited a disrupted estrus cycle, elevated serum levels of testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), increased LH/FSH ratio, and heightened ovarian index. Furthermore, reduced corpus luteum and increased follicular cysts were observed in ovarian tissue. In ovarian tissue, autophagy and apoptosis were activated and CPEB1 was overexpressed. In vitro, CPEB1 overexpression inhibited cell viability and sirtuin-1 (SIRT1), activated tumor necrosis factor-α, and interleukin-6 levels, as well as apoptosis and autophagy; however, CPEB1 knockdown had the opposite effect. In conclusion, overexpression of CPEB1 activated autophagy and apoptosis of ovarian GCs in PCOS.


Assuntos
Síndrome do Ovário Policístico , Animais , Feminino , Ratos , Apoptose , Autofagia , Hormônio Foliculoestimulante Humano , Células da Granulosa , Hormônio Luteinizante , Fatores de Poliadenilação e Clivagem de mRNA/genética , Síndrome do Ovário Policístico/induzido quimicamente , Testosterona , Fatores de Transcrição
13.
J Biochem Mol Toxicol ; 38(4): e23697, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578078

RESUMO

Genistein, an isoflavone has the potential to mimic, augment, or dysregulate the steroid hormone production pathways. We hypothesized that genistein affects the granulosa cell (GCs) functions through a series of biochemical, molecular, and genomic cascades. The present study was conducted to evaluate the impact of genistein exposure on GCs viability, apoptosis, and steroidogenesis. The present study involved 3/5 days of exposure to genistein on GCs collected from abattoir-derived ovine ovaries at doses of 0, 1, 10, 25, 50, and 100 µM. The harvested GCs were used for growth, cytotoxicity, and gene expression studies related to apoptosis, growth, and steroidogenesis. We observed that genistein had both stimulatory at 10 and 25 µM levels as well as inhibitory effects at 50 and 100 µM levels on the growth and proliferation of GCs. Genistein significantly decreased the levels of 17ß-estradiol at higher exposure (50 and 100 µM), whereas the progesterone level increased significantly as the genistein exposure increased. Additionally, genistein could also alter the mRNA expression of the steroidogenic receptor, enzymes, proteins, and growth-related genes suggesting that genistein could potentially alter the steroidogenic pathways. We conclude that genistein can interfere with cell survival and steroidogenesis by exhibiting a dose-dependent biphasic response on the viability, growth-related parameters, and the synthesis of 17ß-estradiol in the cultured GCs.


Assuntos
Genisteína , Isoflavonas , Feminino , Ovinos , Animais , Genisteína/farmacologia , Progesterona/metabolismo , Células da Granulosa/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Isoflavonas/farmacologia , Carneiro Doméstico/metabolismo , Células Cultivadas
14.
Mol Reprod Dev ; 91(3): e23737, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450862

RESUMO

Extracellular vesicles (EVs) play an important role in the development and function of mammalian ovarian follicles. However, the mechanisms by which they are taken up by the follicular granulosa cells remain unclear. In addition, while oocytes play a pivotal role in follicular development, the possible interactions between oocyte-derived paracrine factors (ODPFs) and EV signals are unknown. Therefore, this study aimed to elucidate the mechanism of EV uptake and the effects of ODPFs on EV uptake by follicular somatic mural granulosa cells in mice. Fluorescence-labeled transferrin (TRF) and cholera toxin B (CTB), substrates for clathrin- and caveolae-mediated endocytosis, respectively, were taken up by mural granulosa cells in vitro. Their uptake was inhibited by Pitstop 2 and genistein, inhibitors of clathrin and caveolae pathways, respectively. Mural granulosa cells took up EVs, and this uptake was suppressed by Pitstop 2 and genistein. Moreover, ODPFs promoted the uptake of EVs and CTB, but not TRF, by mural granulosa cells. These results suggest that mural granulosa cells take up EVs through both clathrin- and caveolae-mediated endocytosis and that oocytes may promote caveolae-mediated endocytosis to facilitate the uptake of EVs.


Assuntos
Vesículas Extracelulares , Genisteína , Sulfonamidas , Tiazolidinas , Feminino , Animais , Camundongos , Genisteína/farmacologia , Células da Granulosa , Clatrina , Mamíferos
15.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473715

RESUMO

In female mammals, the proliferation and apoptosis of granulosa cells (GCs) have been shown to determine the fate of follicles. DNA methyltransferases (DNMTs) and SLCO3A1 have been reported to be involved in the survival of GCs and follicular growth. However, the molecular mechanisms enabling DNMTs to regulate the expression of SLCO3A1 to participate in follicular growth are unclear. In this study, we found that the knockdown of DNMT1 enhanced the mRNA and protein levels of SLCO3A1 by regulating the chromatin accessibility probably. Moreover, SLCO3A1 upregulated the mRNA and protein levels of MCL1, PCNA, and STAR to promote the proliferation of GCs and facilitated cell cycle progression by increasing the mRNA and protein levels of CCNE1, CDK2, and CCND1, but it decreased apoptosis by downregulating the mRNA and protein levels of CASP3 and CASP8. Moreover, SLCO3A1 promoted the growth of porcine follicles and development of mice follicles. In conclusion, the knockdown of DNMT1 upregulated the mRNA and protein levels of SLCO3A1, thereby promoting the proliferation of GCs to facilitate the growth and development of ovarian follicles, and these results provide new insights into investigations of female reproductive diseases.


Assuntos
Células da Granulosa , Folículo Ovariano , Camundongos , Feminino , Suínos , Animais , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Proliferação de Células/genética , Mamíferos/genética , RNA Mensageiro/genética
16.
J Assist Reprod Genet ; 41(4): 947-956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38470551

RESUMO

PURPOSE: To investigate the relationship between blood lead levels (BLLs) and IVF clinical outcomes in infertile females and to further explore the possible involvement of granulosa cell (GC) endoplasmic reticulum (ER) stress in the process. METHODS: One hundred twenty-three infertile women undergoing IVF cycles were included in the current study. All participants were divided into three (low, medium, and high) groups determined by BLL tertiles. Gonadotropin releasing hormone (GnRH) agonist regimen for ovarian stimulation was used for all patients, with follicular fluids being collected on the day of oocyte retrieval. Lactate dehydrogenase (LDH) levels in follicular fluid and the endoplasmic reticulum stress-signaling pathway of granulosa cells (GCs) were examined. RESULTS: The oocyte maturation rate and high-quality embryo rate on cleaved stage decreased significantly as BLL increased. For lead levels from low to high, live birth rate (68.29%, 56.10%, 39.02%; P=0.028) showed negative correlations with BLLs. Also, follicular fluid Pb level and LDH level was significantly higher in the high lead group versus the low group. Binomial regression analysis revealed significant negative correlation between BLLs and live birth rate (adjusted OR, 0.38; 95% CI, 0.15-0.95, P=0.038). Further analysis of the endoplasmic reticulum stress (ER stress) signaling pathway of GCs found that expressions of GRP78, total JNK, phosphorylated JNK, and CHOP increased and BCL-2 decreased with increasing BLLs. CONCLUSIONS: BLLs are negatively associated with final clinical outcomes in IVF patients that may be related to increased ER stress response and GC apoptosis. Thus, reducing Pb exposure before IVF procedures may improve final success rates.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Fertilização In Vitro , Líquido Folicular , Células da Granulosa , Infertilidade Feminina , Chumbo , Indução da Ovulação , Humanos , Feminino , Células da Granulosa/metabolismo , Adulto , Infertilidade Feminina/terapia , Infertilidade Feminina/sangue , Infertilidade Feminina/patologia , Chumbo/sangue , Chumbo/toxicidade , Gravidez , Líquido Folicular/metabolismo , Indução da Ovulação/métodos , Taxa de Gravidez , Recuperação de Oócitos , Nascido Vivo/genética , Oócitos/crescimento & desenvolvimento , Coeficiente de Natalidade
17.
Arch Gynecol Obstet ; 309(5): 2107-2114, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38441601

RESUMO

PURPOSE: To compare the DNA damage in granulosa cells (GCs) of women undergoing ovarian-stimulated cycles with four widely used recombinant human follicle-stimulating hormones (rhFSH) in in vitro fertilization (IVF) protocols (Corneumon®, Gonal-F®, Pergoveris® and Puregon®). METHODS: A randomized trial was carried out at a Mexican hospital. GCs were isolated from 18 women with infertility undergoing assisted reproductive techniques (ART). Four controlled ovarian stimulation (COS) protocols including Corneumon®, Gonal-F®, Pergoveris® or Puregon® were used. GCs DNA damage was assessed by the Comet assay. Two parameters were measured: comet tail length (CTL), and Olive tail moment (OTM, the percentage of DNA in the tail multiplied by the distance between the center of the tail and head). RESULTS: Use of the different hrFSH in COS caused variable and statistically significant levels of DNA damage in GCs of infertile women. CTL was similar in the Corneumon® and Pergoveris® groups (mean values of 48.73 and 55.18, respectively) and Corneumon® CTL was significantly lower compared to the Gonal-F® and Puregon® groups (mean values of 61.98 and 91.17, respectively). Mean OTM values were significantly lower in Corneumon® and Pergoveris® groups, compared to Gonal-F® and Puregon® groups (25.59, 27.35, 34.76, and 47.27, respectively). CONCLUSION: Use of Corneumon® and Pergoveris® in COS caused statistically significantly lower levels of DNA damage in GCs of infertile women undergoing ART, which could potentially correlate with better reproductive outcomes.


Assuntos
Infertilidade Feminina , Hormônio Luteinizante , Feminino , Humanos , Dano ao DNA , Combinação de Medicamentos , Fertilização In Vitro , Hormônio Foliculoestimulante , Hormônio Foliculoestimulante Humano , Células da Granulosa , Infertilidade Feminina/terapia , Indução da Ovulação/métodos , Proteínas Recombinantes
18.
Reproduction ; 167(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513348

RESUMO

In brief: Dairy cattle experience a period of infertility postpartum that is caused in part by the development of IGF1/insulin resistance. This study suggests that an adipokine, FNDC3A, reduces IGF1-dependent glycolysis and may contribute to postpartum infertility. Abstract: Dairy cows go through a period of subfertility after parturition, triggered in part by a disruption of energy homeostasis. The mobilization of body fat alters the secretion of adipokines, which have been shown to impact ovarian function. Fibronectin type III domain-containing 3A (FNDC3A) is a recently discovered adipokine-myokine, and FNDC3A mRNA abundance in subcutaneous adipose tissue is increased postpartum in cattle. In this study, we hypothesized that FNDC3A may compromise granulosa cell function in cattle and investigated this using a well-established in vitro cell culture model. Here, we demonstrate the presence of FNDC3A protein associated with extracellular vesicles in follicular fluid and in plasma, suggesting an endocrine role for this adipokine. FNDC3A protein and mRNA was also detected in the bovine ovary (cortex, granulosa and theca cells, cumulus, oocyte and corpus luteum). Abundance of FNDC3A mRNA in granulosa cells from small follicles was increased by in vitro treatment with the adipokines leptin and TNF but not by visfatin, resistin, adiponectin, chemerin or IGF1. Addition of recombinant FNDC3A at physiological doses (10 ng/mL) to granulosa cells decreased IGF1-dependent progesterone but not estradiol secretion and IGF1-dependent lactate secretion and abundance of GLUT3 and GLUT4 mRNA. This concentration of FNDC3A increased cell viability, abundance of mRNA encoding a putative receptor FOLR1, and increased phosphorylation of Akt. Collectively, these data suggest that FNDC3A may regulate folliculogenesis in cattle by modulating IGF1-dependent granulosa cell steroidogenesis and glucose metabolism.


Assuntos
Infertilidade , Progesterona , Feminino , Bovinos , Animais , Progesterona/metabolismo , RNA Mensageiro/metabolismo , Células da Granulosa/metabolismo , Adipocinas/metabolismo , Infertilidade/metabolismo , Lactatos/metabolismo
19.
Reprod Fertil Dev ; 362024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484784

RESUMO

CONTEXT: New animal welfare legislation and ethical guidelines encourage alternative approaches for canine contraception, instead of surgical gonadectomy which is considered invasive and unjustified in healthy dogs. AIMS: Reversible contraception might be achieved by inhibition of aromatase (CYP19), an enzyme catalysing the conversion of androgens to oestrogens. This study provides insights into the spatio-temporal expression and distribution of aromatase in canine ovarian tissue. METHODS: Ovarian tissue was collected from 39 healthy and sexually mature bitches during different stages of the oestrous cycle: pro-oestrus (n =8), oestrus (n =12), dioestrus (n =9) (luteal phase) and anoestrus (n =10). Localisation of cytochrome P450 aromatase was determined by immunohistochemistry. KEY RESULTS: Aromatase activity in the dog is high during pro-oestrus, ovulation and early dioestrus. Comparing types of follicles and corpora lutea, the highest aromatase abundance was found in antral follicles and luteinising follicles, whereas corpora lutea and early antral follicles showed an intermediate presence of the enzyme. Interesting was the high abundance of aromatase in luteinising theca interna cells, prevailing over granulosa cells. CONCLUSIONS AND IMPLICATIONS: Understanding of cells involved in oestradiol production is important for targeted inhibition of oestradiol synthesis, possibly offering an approach for contraception and suppression of oestrus.


Assuntos
Aromatase , Ovário , Feminino , Cães , Animais , Ovário/metabolismo , Aromatase/metabolismo , Folículo Ovariano/metabolismo , Células da Granulosa/metabolismo , Estradiol/metabolismo
20.
Aging (Albany NY) ; 16(5): 4541-4562, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38428403

RESUMO

Ningxin-Tongyu-Zishen formula (NTZF) is a clinical experience formula for the treatment of premature ovarian insufficiency (POI) in traditional Chinese medicine (TCM), and the potential mechanism is unknown. For in vivo experiments, POI mouse models (C57BL/6 mice), were constructed by subcutaneous injection of D-galactose (D-gal, 200 mg/kg). After treatment of NTZF (10.14, 20.27, 40.54 g/kg;) or estradiol valerate (0.15 mg/kg), ovarian function, oxidative stress (OS) and protein expression of Sirt1/p53 were evaluated. For in vitro experiments, H2O2 (200 µM) was used to treat KGN to construct ovarian granulosa cells (OGCs) cell senescence model. Pretreatment with NTZF (1.06 mg/mL) or p53 inhibitor (Pifithrin-α, 1 µM) was performed before induction of senescence, and further evaluated the cell senescence, OS, mRNA and protein expression of Sirt1/p53. In vivo, NTZF improved ovarian function, alleviated OS and Sirt1/p53 signaling abnormalities in POI mice. In vitro experiments showed that NTZF reduced the level of OS and alleviated the senescence of H2O2-induced KGN. In addition, NTZF activated the protein expression of Sirt1, inhibited the mRNA transcription and protein expression of p53 and p21. Alleviating OGCs senescence and protecting ovarian function through Sirt1/p53 is one of the potential mechanisms of NTZF in the treatment of POI.


Assuntos
Galactose , Insuficiência Ovariana Primária , Humanos , Feminino , Camundongos , Animais , Galactose/toxicidade , Sirtuína 1/genética , Sirtuína 1/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Camundongos Endogâmicos C57BL , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/tratamento farmacológico , Insuficiência Ovariana Primária/genética , Células da Granulosa/metabolismo , Senescência Celular , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...